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Abstract. We have extended the enumeration of square lattice and triangular lattice self- 
avoiding walks and their end-to-end distance by two terms. We have also calculated 17 
terms in the series for the resistance of SAWS with bridges an the square lattice. Analysis 
of the new data allows the connective constants to be more accurately estimated, and 
affirms the values y =% and Y =a, and I + y for the exponent of the resistance Series. 

1. Introduction 

In an earlier paper (Wang 1989) we presented an algorithm for enumerating  SAW^. We 
subsequently found that this algorithm had in fact previously been developed by Torrie 
and Whittington (1975). In a related paper, Guttmann (1987) gave a systematic method 
for the analysis of such series based on the method of differential approximants (for 
a full description see Guttmann 1989a). 

In this paper we report the extension of the SAW chain generating function and 
mean square end-to-end distance series for the square and the triangular lattice data, 
both by two terms. Thus we now report data to 22 and 29 terms on the triangular and 
square lattices respectively. The calculations were performed on a Masscomp 5700, 
and took about 700 hours for the triangular lattice calculation, and somewhat less for 
the square lattice calculation. 

By similar methods we have enumerated the mean resistance averaged over all 
self-avoiding walks with bridges. This series is given to 17 terms for the square lattice, 
and augments the related work on this problem by Manna et al (1989). 

The new terms are: 

Square: c28 = 2 351 378 582 244 

c,, = 6 279 396 229 332 

cZ1 = 32 944 292 555 934 

c22 = 138 825 972 053 046 

c28p28/4 = 69 477 665 745 896 

c,,p2,/4 = 195 265 123 427 301 

c2,p2, = 2 336 297 244 025 746 

c,,p,, = 10 544 298 270 404 040. 

Triangular: 

Here c.p. is the sum of the square end-to-end distance of all c,, n-step walks. The 
mean square end-to-end distance ( R ; ) =  c.p./c,. For the square lattice, the series for 
the mean resistance of  SAW^ with bridges, as described in Manna er a/ (1989), is given 
by the coefficients: 4.0, 24.0, 90.0, 328.0, 1090.8, 3575.467, 11 156.904, 34674.676, 
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104463.883, 314446.844, 926065.313, 2727 633.75, 7907 241.5, 22 961 948.0, 
65989872.0, 187 568 736.0, 542658624.0, 1188 122 112.0 for the coefficients of order 
1-17 in the generating function. 

A J Guttmann and Jian Wang 

2. Analysis of series 

The method of analysis used is fully described by Guttmann (1987, 1989a). The data 
for the triangular lattice permit an extension of the analysis given in Guttmann (1989b). 
We have constructed both unbiased and biased differential approximants, where the 
biasing involves assuming that the exponent is $ exactly for the SAW generating function. 
Both first and second order differential approximants were used, the results being of 
comparable quality. Unbiased estimates gave 

x, = 0.240 916 f 0.000 0024 y =  1.3431i0.0008 (first order) 

x, = 0.240 916 f 0.000 0033 y = 1.343 1 i 0.0008 

These results lend strong support to the generally accepted value (Neinhuis 1982) 
y =$= 1.343 75. Accepting this value, linear regression on the approximants gives 
xc = 0.240 9185 f 0.000 0010. This may be compared with an earlier estimate (Guttmann 
1989b) based on the 20-term series, of xc = 0.240 919. 

The square lattice data was analysed similarly. The unbiased approximants gave 
the following estimates: 

x,=O.379 0518f0.0000030 

x, =0.379 0519f0.000 0012 y =  1.343 57i0.00028 (second order). 

Biasing the approximants at y =$ gave xc = 0.379 0526f0.000 0005, which is in good 
agreement with the estimate based on  56-step polygons (Guttmann and Enting 1988), 
x, = 0.379 0523 f 0.000 0002. 

As observed in previous studies, the generating function of the mean square 
end-to-end distance is not as well behaved as the SAW generating function. This remark 
applies both to the generating function whose coefficients are c,p, as well as the 
generating function with coefficients ( R i ) .  In both cases a large percentage of defective 
approximants arise. The advantage of analysing the series for ( R i )  is that the critical 
point is of course precisely at 1.0. If we d o  this, the estimates of the exponent 1 + 2 v  
is 2.497 and increasing (first order) and 2.499 and increasing (second order). Alterna- 
tively, biasing the generating function for c.p. at the value of x, found above gave 
y + 2 u  =2.842*0.004. All these results are consistent with the presumably exact value 

The square lattice data gave rise to similar results for ( R k  while biased analysis 
of the generating function for c.p. at the value of x, found above gave y + 2 u =  
2.843f0.004. These results are again consistent with the presumably exact value U =!. 

Turning now to the resistance data, an unbiased analysis strongly supported the 
expected belief that the exponent was the same as that of the SAW generating function, 
plus one. In fact we found x. = 0.379 03 i 0.003 57 with exponent 2.33 i 0.33. Subsequent 
biased analysis, fixing the critical point a t  the value quoted above gave for the critical 
exponent 2.340i0.035. From the results of Manna et al we would expect this exponent 
to be ( 1  + y) =g= 2.343 75, which is close to our central estimate and well within error 
bars. 

(second order). 

y = 1.343 55 f 0.000 69 (first order) 

4. 
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3. Conclusion 

We have refined our previous estimates of the critical points and critical exponents of 
the two-dimensional SAW problem on the square and triangular lattice, on the basis 
of a significant extension of existing series. We have also given a new series for the 
resistance of SAWS with bridges, and presented numerical evidence supporting previous 
conjectures as to the exact exponent values. 
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